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-~ A MAXTMUM=-LIKELIHOOD APPROACH TO IMAGE SEUMENTATION BY TEXTURE
-d
_"-_ I. E, Bevington and R. M. Mersereau
.
T
p 4‘,\ Georgla Institute of Technology
o, School of Elrctrical Engineering
_‘,::_‘ Atlanta, Georgla 30332 /
A\
) ABSTRACT snomaly in an othervise homczenesous textured
".1-‘ region also led to & 2-D LPC implementation.
&, This paner addresses the problem of segment=
?'/', ing an image by texture. Specifically, we are
o concerned with estimating the trajectory of the ESTIMATOR FORMULATION
:'-' boundary between two reglons characterized by
e different two-dimensional autncorrelation func- The 2~D boundary estimation problem is that
Y tions. An algorithm {s developed which is an of finding a contour C which partitions a seet of
approximation to s wmwaximum~likellhood estimator observed image samples {x(m,n)} 1nto two sets,
, based on the assumption of Gaussian randem fields where one set is presumcd to be & realization of
‘r‘. with known mean and covariance. Prelininary the discrete random fleld (xl(.,n)), the other of
] ‘_t‘, experimental results are given. the fleld “2("“”’ We assume that (ll(l.n)) and
.-.“v.‘ Ix:,(n,n)) arte Independent hoamogeneous GCaussian
} “-0 random flelds with known mean and covariance.
R
'_"-j INTRODUCTION For this psper we imposc the following con-
S straint on the contour C and the resulting parti-
The probles of segmenting aun image into more tion of the N X N set {x(m,n))}. We require that C
L) or less homogeneous regions arises in the areas of be characterized completely by the N-dimensional
] image coding and image understanding. Segosenta~ vector L = (L(0),L(1),...,L(N=1)), such that
tion may be based on a number of local properties,
one of which 1s texture. Although wany defini~ x}(a,n), 0<n<l(m)
tions of texture are available, we will for this x(m,n) @ (1)
work assume that a textured region may dbe charac~ ‘1("“)' L(a)<n<N-1
terized by its statistical autocorrelation proper~
ties. where (Km<N-1.
The specific problem addressed in this paper That {is, we require that there be only one
> is that of estimating the boundary between two "boundsry point" per line. (See, for example,
-, . regions which have different textures but not Figure 1.) This requirement wmay st first seea
-."~ necessarily different average gray levels. The rather severe, but bear in sind that we intend
-,';t algorithm which {s presented assumes complete that the algorithe be applied only over small
\" knowledge of the mean and autocorrelation funce sreas of an isage, snd that we have the freedom to
., tions which characterize the two textures. In rotate the frame.
'.f' practice, this information would be cstimated from
neighboring regions which are assumed homogencous, To formulate the maximus likelihood estimator
Ve envision then that this algori{thm might be used for L, we need an expression for the joint
.~. following an initlial cosrse segmentation proce- probability density function (pdf) for the set
e dure, vhich divides the image into frames and {x(m,n)} conditioned on L. This function is most
,_-l" pre-classifies each frame as described in [1). easily expressed 1in vector notation. Llet x be s
A vector containing all of the observed samples
%y The boundary estimation algorithm {s derived {x(m,n)}. Now let us partition x by assigning to
<. 88 a paximun- likelihood estimstor on the assump- vector x, those paints detersined by a particular
&y tion of jointly Gaussian statistics for the image L to be fros {x,(m,n)}, and to x, those pointa
o2 data. The Gaussian sssumption {s made for msthe- from (x (m,n)}. The conditional pdrzhr x, which
i matical “ractadbiltey. Although actual tmage data ve denofe by p(x|).) 18 the joint density of x, and
'L‘. ®say not fit the GCaussian model very well, the x., conditioned on L. Since the random ﬂeldc
I".. algorithm developed under this assumption hag {x (r,n)) and {x_(m,n)} are independent, this
.'.‘. performed well 1in inftial tests with real {mage jofnt density is simply the product of the indi-
-‘..d dats. The Gaussian sssumption leads to sn imple- vidual conditional densities. That is,
A sentation which involves two=dimensional 1linear
-‘,:. prediction. In this sense nur work closely parale p(xiL) = plx ILdn(x |L) (2)
-".. lels the work of Quatieri [2}, in which a statis~ =hereas
G ] tical forwulation of the prodblem of detecting an The Gaussian sssumption then leads ta ({3])
N
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-: for (x -s.). T linear prediction coefficients -
. p(x|L) = const » |I(l|'l . |l(2|'l in the Cwo matrices will depend on the statistics "
‘. - f of the corresponding processes and on the ordering .
. . exp{-; [(1)-51)11(;’(1)11‘: (N used to form the vectors x ) and % » .
\ ’(-’Eﬂ'E;)TK:!(! 'E)]} Returnfng to p(x|L) fn (3) we take the ad

= - “ ot logarithae, multiply by =2, and drop the constant '
where term to ohtain the log-likelihond function A(L): .
et a = Ef{x_} w = E(x} :'
< - ! e ¢ AL = dnlk |+ inlk, - (x K m ]
< K, = Elx]) Ky = Elxax]) R k
L4 - = (x,-m) K (2 my) (10) )
W Note that all of the vectors and mitrices on the - ;
) right-hand-side of (3) (even ctheir dinensions) Note that
b depend on L. The explicit forms nf rhese elements -1 or
. also depend on the order we choose in assigning 1. { -~|A‘ | IDIHAI |
the points of {x(m,n)} to x  and x,. ! (11)
Y =1¢,(n)
3] We now consider a whitening transformation on n
. ] the observed data, which will lead to sn expres-
LN sion for p(x|L) which is mure easily evaluated for (Similarly for |K:,|.)
‘{ varying L. Let From (8),(9),(10), and (11),
N e =A(x-m) (&) Y
L3 1= =1 ML= X [c;(n)/d,(n) + ln(dl(n))]
where A, is such that n (12)
. 2
¥ Efe,e]} = D, (5) + zﬂ:[-z(n)/dz(n) + ln(dz(n))]
L]
b for D; diagonal. Then from (4) and (v),
1 : D, = AJI’.IA'{ (6) The maximum likelihood estimate for L s that
value which minimizes A (L).
Assuming AJ and Dl are invertible, this gives
) k7t = Al m COMPUTATION OF THE LIKELIH0OD FUNCTION
Using (4) and (7) we can reurite the first half of We now consider the computation of the linear
N the exponent of p(x L) in (3) as prediction residuals e;(n) and e,(n) for & given
\' l.. The first step is to establish an ordering for

T -1 2 the elements of x, and X5 wvhich ve show in Figure
3 (3_1-_'_)) X, {51-51) - zel(n)/dj(n) (8) 1. For a given L, the points assumed to be from

n (xl(m.n)) are scanned left to right, top to
bottom, while those from (x..,(l.n)) sre scanned

h vhere e,(n) {s the nth element of ¢,, and d(n) is right to left, top to bottom. It will be showm
- the nth diagonal element of D), which is the mcan that this ordering leads to a simple line-by-line
- squared value of ¢,(n). Using similar definitions procedure for estimating L.
- for 25, Ay Dy, ‘28") and d,(n) we have
An  exact evaluatfon of A(L) in (12) would
Ne -1 2 require that the residusls ¢, snd e be computed
« (12-9_1)'5(2 (x =)« ) e)(n)/d (n} (9) using spatially varying prediction maske for which
the order §ncreases with each nev point as shown
in Figure 2. Also, the shape of the sasks for e
-+ given pixel locsation (m,n) would depend on L(k)
- Now let us address the construction of the for all k<a (the hypothesized edge-point locations
3 sstrices A, and A,. All we have required to this for all previous rows). 1In order to arrive st an
point fs that these operators whiten the vectors fmplementable algoritha we replace the fdeal spe-
;’ gg'!.xzch"‘:o":%g'!‘: :"“"‘“ “": 'l’: ‘“""“?;:' tially varying mssks with relatively smsll epe~
T Theret . uctio L L ollows. it tially tnvarisnt ones as shown in Figure 2. There
X ercien {4].) Let A, be lower triangular with 1’s are two sources of error introduced by this
on the diagonal. In addition, lct the non-zero approximation. First, by restricting the mask
- off-dlugonal part of each row j be the (J-1)st size, we are not in gencral able to remove sll of
. ordur linear predictor for the jth element of the correlation hetween the residual terms.
M (2,-%,) given sl] previous elements. In effect, Second, by not allowing the shape of the wmesk to
., wve compute the jth element of ¢, by subtracting vary with {1ts locstfon relative to the hypoth-
.. from the jth element of (a;-m,) the part predict- esized bnundary, we encounter situstions like that
.\ able from all elements k for which k<}. Let A shown In Figure 3, where part of the mask extends
be constructed similarly, using iin:ar predictonrs over the boundary, and we in enscace attempt to
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predict s sample fruom onr process using samples
assuped to be part of the other, Tiere are

" obviously some tradeoffs to be made in selecting

the msask shape and size.

The spatislly invarfant prediction mask
appronimation leads to some simplification of
(12). Wecause the random fields {x . (w,n)} and
{x,(m,n)} are homsgencous, the mean squired value
of the prediction errnr s constant and we cean
teplace dl(n) and d,(n) by 02 and 02 ., respec—
tively. Also, each residual term e, 4r o, is now
computed independently of [, so the Aepcnd-nce of
A on L {s reduced to a form which may be
e:pre.lé? explicfrly by the liaits on the summa-
tions. Letting A (L) denote the approximate
value of A(L) we have

. N=l=-p
AL = T T(a,L(a) ayn

a=p

vhere

k
Tk = T edmnyiod + 1ned
n=p

N=l-p
+ T e3mmn)iol + 1ned)
nek+l

(The limits on the suwmations have been chosen
such that we compute prediction residuals only to
within & distance p of the frame boarders, where p
{e the extent of the predictor wask. This
weasure, taken to prevent the mask from ever
extending outside the frame, slightly decreases
the area ovar vhich we can search for the con~-
tour,.)

As tmplied 1in the discussion, the reriduals
e (n,n) and e (m,n) are glven by

e;(m,0) @ x(n.0) ~L T 2, x(n=t,n-1)
[

o (a,n) = x(u,n) -y by jx(m=1,n=1)
1

vhere {a;.}] and (b, )} are the sets of 2-0 LPC
coefticients for the” processes Gx)(-.n)) and

ijén.n)’. respectively. The LPC coef{ficients are
degendent on the prediction masks used (1],

EDGE SHAPE CONSTRAINTS

The 1likelihood function in (13) {s minimized
by choosing independently for each rov m the value
L(m) which sinimizes t's corresponding T(m,L(n)).
1t has been found in practice however that much
better results are obdtained when we introduce
constrainte on the shape of the boundary so that
coupling 1s introduced into the row=-by-rov deci-
slons. The need for shape constraints arises
partially because of arrors introduced by the
esall spatislly-invariant predictlion masks.

B ,. v a® ‘: ‘-..- ..q ." « \- oA - .'-'\-‘\t . $f\

Congtra‘nts on contour shape may be {imposed
conveniently $n the framewnrl. of the expression
for A'(L) 1n (1Y). 1In our current Impleaents-
tion, we flrst generate T(n,n) (the "likelihond
terreain™) for all (m,n) In the scarch srea. The
next step s tn search {or a path through this
terrain which is in some scnse optimal subjlect to
4 desired constraint. We require of course that
this path touch exactly one point (n each line.
1f, for eximple, the constraint s that the
contour he 4 straight line, we =ight systemat-
fcally penerate all L which would rorrespond to a
strafght linc, and evaluate A’ for each such L by
summing the heights of the terrain st polnts
tourhied hy the corresponding line. Another form
the constraint wmay take is strchastic. For
example we might model the sequence of line-by-
line cdge coordinates as a first order Markov
process, as is done by Cooper and Sung [5]. In
this case the optimal path fs found using a
dynam{c programming procedure.

PRELIMINARY RESULTS

The results of sowe early testing of the
algnrithm appear in Figure 4. We show results for
two differcnt 32¥32 textured fmages, one of which
is repeated along the top of the figure, the other
repeated along the bottom, The images were formed
using regions extracted from & wmultiple-textured
image tn the USC dats base. The true edge (the
one used in constructing the images) 1s superim-
posed on the first frase in each rtow. The
difficulty of finding the edge by naked eye
(partirularly for the second im.ge) is tliustrated
in the second fraime (n each row, where we repeat
the firat frame without drawing the edge. In the
third frame we supcrimpose the boundary found by
our algorithm when we {impose a straight-line
constraint. The fourth frame shows the result of
using & crude stochastic coustraint, where the
edpe coordiunate for line § Lg axsumed to be the
contdinate on lin~ j=} plus & biss plus a unifore
randam varisble in the interval {-1,1]. The bias
term 1s cestimated by first finding the edge
subject to s straight line consraint. The predic-
tion wmasks nsed (n all {nstances were 3X3 quarter
plane.

We have found that, in gennral, the more we
know about the edpe beforehand, the eare accurate
is the resulting earimate and the more quickly (it
car ': found. We are curreuntly studying fntelli-
R «arch procedures and ways of specifying and
{ncorporating a priort {(nformation. We are also
investigating the effects of prediction mask size
and shspe an the accuracy of the boundary
estimate.
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